Διόφαντος

Διόφαντος_-_Diophantos_-_ДИОФАНТ   Ο Διόφαντος ο Αλεξανδρεύς ήταν Έλληνας μαθηματικός του τρίτου αιώνα (210–290μ.Χ. ή 200-284μ.Χ.), ο οποίος έζησε στην Αλεξάνδρεια της Ρωμαϊκής Αιγύπτου. Αποτέλεσε την πρώτη αληθινή ευφυία στο πεδίο της θεωρίας αριθμών. Μια από τις εργασίες του, επηρέασε τόσο πολύ τους μεταγενεστέρους του ευρωπαίους αριθμοθεωριτικούς ώστε η γέννηση της να δικαιούται να χαρακτηριστεί ως μια μεγάλη στιγμή των μαθηματικών. Αν και την Άλγεβρα την είχαν παρουσιάσει προγενέστεροί του, όπως ο Ευκλείδης, ο Θυμαρίδας, ο Νικομήδης και άλλοι, ο Διόφαντος την εξέλιξε σε τέτοιο βαθμό, ώστε να θεωρείται «πατέρας» της. Με την ανάπτυξη της Άλγεβρας, έθεσε τις βάσεις σε μια σημαντική πτυχή των σύγχρονων μαθηματικών, τη Διοφαντική Ανάλυση, δίνοντας μια μεθοδολογία επίλυσης απροσδιόριστων εξισώσεων με πολλαπλές λύσεις. Επίσης θεωρείται πρόδρομος του μαθηματικού συμβολισμού, εισάγοντας πρώτος σύμβολα στις άγνωστες μεταβλητές των προβλημάτων.

   Ο Διόφαντος έγραψε τρεις μαθηματικές εργασίες: τα Αριθμητικά, από την οποία έχουν σωθεί μόνο έξι από τα δεκατρία βιβλία, τους Πολυγωνικούς Αριθμούς, από την οποία υπάρχει ένα μόνο μέρος και τα Πορίσματα, που έχουν χαθεί. Τα Αριθμητικά είναι μια μεγάλη και εντελώς πρωτότυπη εργασία. Είναι μια αναλυτική αντιμετώπιση της αλγεβρικής θεωρίας αριθμών που χαρακτηρίζει το συγγραφέα ως έξυπνο δεξιοτέχνη αυτού του πεδίου. Πολλοί σχολιαστές ασχολήθηκαν με αυτή την εργασία, αλλά ο Ρεγιομοντάνος ήταν αυτός που το 1463 ζήτησε μια λατινική μετάφραση του σωζόμενου ελληνικού κειμένου. Την πρόκληση αποδέχτηκε ο Ξυλάντερ (Xylander, εξελληνισμένο όνομα του Wilhelm Holzmann, καθηγητή στο πανεπιστήμιο της Χαϊδελβέργης) ο οποίος έκανε μια αξιέπαινη μετάφραση που συνοδευόταν από σημαντικά σχόλια. Η μετάφραση αυτή χρησιμοποιήθηκε στη συνέχεια από τον Γάλλο Μπάσε ντε Μεζιριάκ (Bachet de Meziriac), ο οποίος το 1621 δημοσίευσε την πρώτη έκδοση του ελληνικού κειμένου μαζί με μια λατινική μετάφραση και σημειώσεις. Το 1670 έγινε μια δεύτερη έκδοση της ίδιας αυτής μετάφρασης, δυστυχώς όμως αρκετά απρόσεκτη. Αυτή η δεύτερη έκδοση έχει ιδιαίτερη ιστορική σημασία, διότι περιείχε, ενσωματωμένες στο κείμενο τις περίφημες σημειώσεις που έκανε ο Φερμά (Fermat) στο περιθώριο, σημειώσεις που προκάλεσαν πολλές έρευνες στη θεωρία αριθμών. Αργότερα εμφανίστηκαν γαλλικές, γερμανικές και αγγλικές μεταφράσεις των Αριθμητικών. Το σύγγραμμά του Αριθμητικά, είναι το αρχαιότερο ελληνικό σύγγραμμα άλγεβρας. Το μέρος των Αριθμητικών που έχει σωθεί ασχολείται με την επίλυση 130 περίπου προβλημάτων μεγάλης ποικιλίας, που οδηγούν σε εξισώσεις πρώτου και δεύτερου βαθμού, και λύνεται επίσης μια πολύ ειδική κυβική εξίσωση. Το πρώτο βιβλίο περιέχει εξισώσεις με έναν άγνωστο, ενώ τα άλλα βιβλία ασχολούνται με απροσδιόριστες εξισώσεις δεύτερου βαθμού με δύο και τρεις αγνώστους. Είναι εντυπωσιακή η απουσία γενικών μεθόδων και η επινόηση έξυπνων μαθηματικών τεχνασμάτων που σχεδιάζονται για τις ανάγκες κάθε συγκεκριμένου προβλήματος. Ο Διόφαντος δεχόταν μόνο θετικές και ρητές λύσεις και στις περισσότερες περιπτώσεις ήταν ικανοποιημένος όταν έβρισκε μια λύση σε ένα πρόβλημα, έστω κι αν αυτό δεχόταν κι άλλες λύσεις. Υπάρχουν μερικά αρκετά δύσκολα θεωρήματα που διατυπώνονται στα Αριθμητικά. Για παράδειγμα, βρίσκουμε, χωρίς απόδειξη αλλά με αναφορά στα Πορίσματα, την πρόταση ότι η διαφορά δύο ρητών κύβων είναι επίσης άθροισμα δυο ρητών κύβων — ένα ζήτημα που διερευνήθηκε αργότερα από τους Φρανσουά Βιέτ (Francois Viete) ντε Μεζιριάκ και ντε Φερμά. Υπάρχουν πολλές προτάσεις σχετικά με την παράσταση αριθμών ως αθροίσματος δυο, τριών ή τεσσάρων τετραγώνων, ένα πεδίο που διερευνήθηκε και ολοκληρώθηκε αργότερα από τους ντε Φερμά, Όυλερ και Ζοζέφ Λουί Λαγκράνζ (Joseph Louis Langranz). Άλλο παράδειγμα, είναι το πρόβλημα 32 του 2ου βιβλίου:
«Βρείτε τρεις αριθμούς έτσι ώστε το τετράγωνο οποιουδήποτε από αυτούς αν προστεθεί στον επόμενο, να μας δίνει ένα τετράγωνο.» Ο Διόφαντος προτείνει μια λύση για το παραπάνω πρόβλημα που φανερώνει την αλγοριθμική ικανότητά του.
«Έστω x ο πρώτος, 2x+1 ο δεύτερος και 2(2x+1)+1 ή ισοδύναμα 4x+3 ο τρίτος, έτσι ώστε να πληρούνται οι δυο συνθήκες. Η τελευταία συνθήκη δίνει (4x+3)2+x=τετράγωνο και έστω τετράγωνο=(4x+4)2. Τότε x=7/57, και οι αριθμοί είναι 7/57, 71/57, 199/57».
Τι εννοούσε ο Διόφαντος; Τον πρώτο αριθμό τον ονόμασε x. Το δεύτερο αριθμό θα μπορούσε να τον ονομάσει με πολλούς τρόπους, αλλά αποφάσισε να τον ονομάσει 2x+1 επειδή γνώριζε ότι x2+2x+1=(x+1)2, και συνεπώς είχε ήδη ικανοποιηθεί η πρώτη συνθήκη. Στη συνέχεια, τον τρίτο αριθμό θα μπορούσε να τον ονομάσει όπως ήθελε, αλλά επέλεξε να τον ονομάσει 2(2x+1)+1 δηλαδή 4x+3, επειδή ήξερε ότι (2x+1)2+2(2x+1)+1=(2x+2)2, και συνεπώς ικανοποιείται και η δεύτερη συνθήκη. Του έμενε μόνο να ικανοποιήσει την τρίτη συνθήκη, δηλαδή η παράσταση (4x+3)2+x να ισούται με ένα τέλειο τετράγωνο. Εδώ ο Διόφαντος σκέφτηκε ότι αυτό το τετράγωνο θα μπορούσε να είναι της μορφής (4x-4), επειδή έτσι θα μπορούσε να λύσει εύκολα το πρόβλημα με την επίλυση μιας απλής πρωτοβάθμιας εξίσωσης, της (4x+3)2+x=(4x-4)2, όπου με τη χρήση γνωστών ιδιοτήτων καταλήγει στις λύσεις 57x=7  ή  x=7/57, η οποία είναι η τιμή του πρώτου αριθμού που αναζητούσαμε. Εύκολα με αντικατάσταση βρίσκουμε και τους άλλους δυο αριθμούς:  2x+1=2(7/57)+1=71/57, 4x+3=4(7/57)+3=199/57. Πραγματικά οι τρεις αριθμοί ικανοποιούν τις συνθήκες του προβλήματος:
(7/57)2+71/57=(64/57)2
(71/57)2+199/57=(128/57)2
(199/57)2+7/57=(200/57)2
Προφανώς, δεν είναι η μοναδική τριάδα λύσεων. Αν έθετε σαν τρίτο αριθμό το 4x-5 ή το 4x-6 θα μπορούσε να βρει και άλλες λύσεις. Ο Διόφαντος επίσης διατύπωσε ότι οι αριθμοί λ22, λ22, 2λμ όπου λ, μ θετικοί άνισοι ακέραιοι, αποτελούν Πυθαγόρεια Τριάδα.

   Από την εποχή του Διόφαντου τουλάχιστον και δεν ξέρουμε ακόμη πόσο πιο πριν, οι Έλληνες μαθηματικοί είχαν βρει τον τρόπο που λύνονταν συνήθως μια περίπλοκη σειρά αλγοριθμικών βημάτων, με πρακτική αριθμητική όπως λέγαμε στο δημοτικό σχολείο, να τα λύνουν μεταφράζοντας το πρόβλημα σε εξίσωση με τη χρησιμοποίηση κάτι αντίστοιχου με τον δικό μας σημερινό άγνωστο x. Δηλαδή να καταστρώνουν και εκείνοι μια εξίσωση και να φθάνουν πολύ πιο εύκολα στο αποτέλεσμα. Η σημασία της ανακάλυψης που έγινε στην έδρα της Ιστορίας των Μαθηματικών από τους Χριστιανίδη και Σκούρα έγκειται στο ότι βρέθηκε και αποδείχθηκε πως ο μαθηματικός Θέων χρησιμοποίησε και σε άλλα πεδία την «αλγεβρική» μέθοδο του Διόφαντου, που ήταν μάλλον σε κοινή χρήση από τους τότε ανθρώπους, για τη λύση πρακτικών αριθμητικών προβλημάτων. Οι Άραβες δεν έκαναν τίποτε παραπάνω από το να μεταφράσουν και να διασώσουν κείμενα και δεν προσέθεσαν μια γραμμή στο σώμα των ήδη γνωστών μαθηματικών θεωριών. Την εποχή του Μεσαίωνα της Ευρώπης οι Άραβες μελέτησαν και εμπλούτισαν την άλγεβρα και σε αυτούς οφείλει και την ονομασία της (άλγεβρα=παραφθορά του όρου al-gabr = πλήρης / ολοκληρωμένη αριθμητική ή κατ’ άλλους προήλθε όμοια από το έργο Αράβων μαθηματικών του 9ου αιώνα: al–gabr w’ al-mugabala= ανασύσταση και μείωση). Έπειτα η άλγεβρα και η ανάλυση διαδόθηκαν στην Ιταλία μέσω κυρίως του Leonardo της Πίζας (Fibonacci), ο οποίος μετέφερε πολλές γνώσεις από τα ταξίδια του στην Ανατολή. Αργότερα, κατά τον 16ο αιώνα, το έργο του Διόφαντου έγινε γνωστό και άρχισαν να δημοσιεύονται μεταφράσεις των Αριθμητικών. Από τους νεότερους μαθηματικούς ο Euler μελέτησε Διόφαντο και έδωσε παρόμοιες λύσεις με αυτόν στις εξισώσεις του.

   Όταν πέθανε ο μέγας μαθηματικός Διόφαντος, οι μαθητές του (κατά παραγγελία του) αντί άλλου επιγράμματος, συνέθεσαν έναν γρίφο και τον έγραψαν πάνω στον τάφο του. Το επίγραμμα αυτό, είναι από τους πιο γνωστούς μαθηματικούς γρίφους. Ιδού λοιπόν το Επίγραμμα του Διόφαντου:

Επίγραμμα από την Παλατινή ανθολογία (500μ.Χ.)

«ΔΙΑΒΑΤΗ, Σ” ΑΥΤΟΝ ΤΟΝ ΤΑΦΟ ΑΝΑΠΑΥΕΤΑΙ Ο ΔΙΟΦΑΝΤΟΣ. ΣΕ ΕΣΕΝΑ ΠΟΥ ΕΙΣΑΙ ΣΟΦΟΣ, Η ΕΠΙΣΤΗΜΗ ΘΑ ΔΩΣΕΙ ΤΟ ΜΕΤΡΟ ΤΗΣ ΖΩΗΣ ΤΟΥ. ΑΚΟΥΣΕ. ΟΙ ΘΕΟΙ ΤΟΥ ΕΠΕΤΡΕΨΑΝ ΝΑ ΕΙΝΑΙ ΝΕΟΣ ΓΙΑ ΤΟ ΕΝΑ ΕΚΤΟ ΤΗΣ ΖΩΗΣ ΤΟΥ. ΑΚΟΜΑ ΕΝΑ ΔΩΔΕΚΑΤΟ ΚΑΙ ΦΥΤΡΩΣΕ ΤΟ ΜΑΥΡΟ ΓΕΝΙ ΤΟΥ. ΜΕΤΑ ΑΠΟ ΕΝΑ ΕΒΔΟΜΟ ΑΚΟΜΑ, ΗΡΘΕ ΤΟΥ ΓΑΜΟΥ ΤΟΥ Η ΜΕΡΑ. ΤΟΝ ΠΕΜΠΤΟ ΧΡΟΝΟ ΑΥΤΟΥ ΤΟΥ ΓΑΜΟΥ, ΓΕΝΝΗΘΗΚΕ ΕΝΑ ΠΑΙΔΙ. ΤΙ ΚΡΙΜΑ, ΓΙΑ ΤΟ ΝΕΑΡΟ ΤΟΥ ΓΙΟ. ΑΦΟΥ ΕΖΗΣΕ ΜΟΝΑΧΑ ΤΑ ΜΙΣΑ ΧΡΟΝΙΑ ΑΠΟ ΤΟΝ ΠΑΤΕΡΑ ΤΟΥ, ΓΝΩΡΙΣΕ ΤΗΝ ΠΑΓΩΝΙΑ ΤΟΥ ΘΑΝΑΤΟΥ. ΤΕΣΣΕΡΑ ΧΡΟΝΙΑ ΑΡΓΟΤΕΡΑ, Ο ΔΙΟΦΑΝΤΟΣ ΒΡΗΚΕ ΠΑΡΗΓΟΡΙΑ ΣΤΗ ΘΛΙΨΗ ΤΟΥ, ΦΤΑΝΟΝΤΑΣ ΣΤΟ ΤΕΛΟΣ ΤΗΣ ΖΩΗΣ ΤΟΥ.»

Γεώργιος-Αλέξιος Κ. Καραντώνης

       

Advertisements

About Gio Don Karanton

Μαθηματικός
This entry was posted in Άρθρα, Μαθηματικά and tagged , , , . Bookmark the permalink.

Σχολιάστε

Εισάγετε τα παρακάτω στοιχεία ή επιλέξτε ένα εικονίδιο για να συνδεθείτε:

Λογότυπο WordPress.com

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό WordPress.com. Αποσύνδεση / Αλλαγή )

Φωτογραφία Twitter

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Twitter. Αποσύνδεση / Αλλαγή )

Φωτογραφία Facebook

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Facebook. Αποσύνδεση / Αλλαγή )

Φωτογραφία Google+

Σχολιάζετε χρησιμοποιώντας τον λογαριασμό Google+. Αποσύνδεση / Αλλαγή )

Σύνδεση με %s